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This study examines three possible approaches to improving the speed in generating 

wind-optimal routes for air traffic at the national or global level. They are: (a) using the 

resources of a supercomputer, (b) running the computations on multiple commercially 

available computers and (c) implementing those same algorithms into NASA’s Future ATM 

Concepts Evaluation Tool (FACET) and compares those to a standard implementation run 

on a single CPU. Wind-optimal aircraft trajectories are computed using global air traffic 

schedules. The run time and wait time on the supercomputer for trajectory optimization 

using various numbers of CPUs ranging from 80 to 10,240 units are compared with the total 

computational time for running the same computation on a single desktop computer and on 

multiple commercially available computers for potential computational enhancement 

through parallel processing on the computer clusters. This study also re-implements the 

trajectory optimization algorithm for further reduction of computational time through 

algorithm modifications and integrates that with FACET to facilitate the use of the new 

features which calculate time-optimal routes between worldwide airport pairs in a wind field 

for use with existing FACET applications.  The implementations of trajectory optimization 

algorithms use MATLAB, Python, and Java programming languages. The performance 

evaluations are done by comparing their computational efficiencies and based on the 

potential application of optimized trajectories. The paper shows that in the absence of 

special privileges on a supercomputer, a cluster of commercially available computers 

provides a good option for computing wind-optimal trajectories for national and global air 

traffic system studies.  

I. Introduction 

he desire to improve the efficiency of air traffic routes requires the computation of the fuel and time optimal 

trajectories between the city-pairs and comparison with the current baseline routes. The computation of the 

optimal trajectory depends on the aircraft dynamics model, fuel flow calculations, wind conditions and a cost 

function. Uncertainties in flight information, operations, and weather result in the requirement to generate large 

number of optimal aircraft trajectories to estimate range of safety, capacity, efficiency and environmental impacts 

based on various strategic plans and concepts.  

There is extensive literature1-5 on the computation of optimal trajectories for single or few aircraft involving 3-

degrees of freedom (DOF) or 6-DOF models, different cost functions and wind conditions. Research at NASA has 

developed wind-optimal routes for domestic flights2 and oceanic flights3-5 using 3-DOF models, wind data, different 

cost functions and constraints. The MATLAB computation for generating wind-optimal routes using an Apple Mac 

Pro with dual 2.66 GHz 6-core Intel Xeon processors and 16 GB memory takes approximately 30 sec per trajectory 

depending on the distance between city-pairs. The generation of one set of wind-optimal routes per day in the 

National Airspace System and, assuming 30,000 flights, takes approximately 10 days. Based on the Mac Pro, a 

simulation of wind-optimal global air traffic routes of about 90,000 flights by the OAG6 for 2014, will take more 

than a month on a desktop computer like the Mac Pro. It is clear that alternative computational approaches are 

needed to generate wind-optimal aircraft trajectories in order to support various trade-off studies involving global air 

                                                           
1Research Scientist, U.C. Santa Cruz, MS 210-8, Member AIAA. 
2Senior Scientist for Air Transportation Systems, Aviation Systems Division, Fellow. 

T 

https://ntrs.nasa.gov/search.jsp?R=20190025461 2020-03-10T08:50:09+00:00Z



 

American Institute of Aeronautics and Astronautics 
 

 

2 

traffic. 

 This paper describes preliminary results in an effort to use the Pleiades supercomputer in the NASA Advanced 

Supercomputing (NAS)7 facility at Ames Research Center for computing global air traffic simulation of wind-

optimal routes. It also presents initial setups for running the same computations on a computer cluster in the 

Airspace Concept Evaluation System (ACES)8 laboratory at NASA Ames Research Center. The evaluation of 

potential benefits is based on the computational efficiency gained from accessing NAS and ACES systems for the 

generation of wind-optimal routes worldwide for one day. The MATLAB wind-optimal code is also rewritten into 

the Java programming language with modified numerical techniques for further computational efficiency and being 

compatible with FACET9.   

 Section II describes the three potential computational approaches and a brief description of the applied trajectory 

optimization algorithm. Section III introduces the worldwide global flight schedules and global atmospheric data. 

Section IV compares the computational efficiency of using a Mac Pro, ACES computer cluster, and Pleiades 

supercomputer. Section V evaluates the accuracy of the MATLAB program and the FACET programs under a 

useful application of wind-optimal trajectories to assess the potential performance changes due to algorithm 

modifications made in FACET programs. 

II. Computational Approaches 

The trajectory optimization algorithm implemented for this study adapts a practical optimization approach2-5 by 

assuming a typical structure for an aircraft trajectory and focuses on optimizing direct operating cost during cruise 

when the time and fuel savings have the most impact. A typical aircraft trajectory consists of an initial climb, a 

steady-state cruise, and a final descent. Typically, the cruise portion is the longest by far.  Here, aircraft performance 

is optimized for the cruise phase only. The aircraft optimal heading during cruise is the solution of the Zermelo 

problem1 derived on a spherical Earth surface in the absence of constraints. The horizontal trajectory segments are 

optimized based on the objective cost values i.e. cost-to-go associated with optimal extremals i.e. potential optimal 

trajectories generated by forward or backward integrating the dynamical equations for optimal heading and aircraft 

motion from various points in the airspace. This computationally efficient algorithm searches for optimal solutions 
by combining calculus of variations and dynamic programming. The details of the optimization procedure are 

described in references[2, 4-5].    

The implementation of the trajectory optimization algorithms use MATLAB, Python, and Java programming 

languages. The aircraft trajectory optimization algorithm is originally implemented in MATLAB and is called the 

MATLAB M-Stage program in this paper. The MATLAB M-Stage program optimizes an aircraft trajectory in 

multiple stages; and is run on a Mac Pro with dual 2.66 GHz 6-core Intel Xeon processors and 16 GB memory for 

computing air traffic simulation of wind-optimal routes at the regional level.  With minor modifications, the 

MATLAB M-Stage program is ready for parallel executions on NASA’s ACES computer cluster. The NAS facility 

currently does not support multiple processors for MATLAB computations but it does for the Python language. For 

this purpose, the Python M-stage program is written based on MATLAB M-Stage program. Python is chosen for its 

quick implementation and less development efforts due to required numerical techniques readily available in Python 

numerical libraries. In addition to the computational enhancement through parallel processing on computer clusters, 

this study also re-implements MATLAB M-Stage program in Java programming language for reduction of 

computational time through algorithm modifications and for running with FACET on a Mac Pro. The integration of 

Java programs with FACET required relatively more development effort. However, it facilitates integration of the 

new features which calculate time-optimal routes between worldwide airport pairs in a wind field for use with 

existing FACET applications.  

Section IIA outlines the processing of Python M-Stage program on NAS supercomputers. Section IIB 

summarizes the parallel computations of MATLAB M-Stage program on ACES computer cluster. Section IIC 

considers modifications to the optimization algorithms to reduce the computational time and describes the efforts 

related to FACET development. 

A. NASA Advanced Supercomputing Facility  

The NAS facility encompasses several supercomputers that are available to users2. The primary compute system 

is Pleiades, which includes 163 racks with 11,176 total nodes containing 184,800 CPU cores. Pleiades contains three 

different types of processors: Westmere, Sandy Bridge, and Ivy Bridge. A submitted job will use only one type of 

processor. Both Westmere and Ivy Bridge nodes are used in this study. Sandy Bridge nodes were not used, as they 

do not contain enough memory. Another supercomputer used in this study is Merope, with 8 racks, 512 nodes, and 

6,144 CPU cores. This system contains only Westmere nodes.  Selection of processors with sufficient memory is 
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important because trajectory optimization for long-haul flights requires more memory. The results shown in this 

paper used Ivy Bridge nodes that each has twenty 2.8 GHz Intel Xeon processors with 3.2 GB memory per CPU 

core.  

All of the supercomputers are available only through the submission of batch jobs. To prepare and submit jobs, 

users log into one of many front-end systems. Each supercomputer has a set of associated front-ends. The user edits 

and compiles the program on the front-end systems and can also execute the programs for debugging and testing. 

Pleiades offers a development queue for program development and testing and a normal queue for regular 

computations. The wait time, which is defined as the time period after a job submission and before its execution, is 

shorter for development queue that has a higher priority than the normal queue. However, it has limitations that only 

one job may be submitted to this queue per user each time and the maximum execution time is two hours to 

discourage over use.  

The NASA’s NAS environment includes three file systems that are relevant to the current study. The user home 

directories are accessible to a user logged onto a Pleiades or Merope Front End computer or to processes running on 

Pleiades or Merope. This file system contains all of the program source and binary files, and contains the default 

directory when the Python program is running on Pleiades or Merope. The nobackup file system is available to a 

user logged into a front-end system, a supercomputer, a Lou front end, or Lou. This is the common area for files 

generated by programs. The Lou file system is designed for long-term storage of files. Output files from the Python 

program are copied here for copying to local systems at the Aviation Systems Division and kept here for archival 

storage. 

 Compute jobs are submitted to the supercomputers by using the Portable Batch System (PBS) utility, developed 

at NASA Ames Research Center.  With more than 10,000 instances of the program executing simultaneously, 

synchronization between the instances is necessary to ensure that all cases are processed, and each case is only 

processed once. The current study uses a Bourne shell script with PBS directives that specify the parameters for the 

batch job to synchronize the program instances. 

B. NASA’s ACES Computer Cluster 

A computer cluster in the ACES laboratory at NASA Ames Research Center is used for running the MATLAB 

M-Stage program for global trajectory optimization. The computational efficiency for this approach will be 

compared to that of NAS Supercomputers. The computer cluster consists of sixteen 2.3GHz 8-core Intel Xeon 

processors with 64 GB memory. The MATLAB Parallel Computing Toolbox is used for developing MATLAB 

programs that are ready for parallel executions on a multicore desktop computer.  They are then scaled up using 

MATLAB Distributed Computing Server (MDCS)10 that is setup on the computer cluster. MDCS supports running 

MATLAB programs in command line and through batch jobs. It also includes a built-in cluster job scheduler to 

manage multiple applications simultaneously running on the cluster computer.  

For the current study, users log in to the client machine, which is connected to the MDCS running on the cluster 

computer, remotely from the local desktop. The parallel computing toolbox is installed on the client machine and 

computation jobs are submitted from the client node. The user can edit the MATLAB programs on the client node 

and can also execute the programs for debugging and testing. 

A common file system can be built for data sharing between the client node and the cluster computer.  In 

general, the client node contains all of the program source, data files, and output results for the MATLAB program.  

After completing all computations, the results can be copied from the client node to local computer systems. 

C. FACET: Future ATM Concepts Evaluation Tool 

FACET is a simulation and analysis tool developed by NASA Ames Research Center to provide a simulation 

environment for concepts and technology development and evaluation to support future air traffic management 

systems9. FACET models system-wide en-route airspace operations at the U.S. national level and process over 5,000 

aircraft on a single desktop computer. FACET was designed with a modular architecture to facilitate rapid 

prototyping of advanced ATM concepts. Each ATM concept application is implemented as an individual module 

linked to the core structure of FACET. This core provides modeling features (e.g., airspace and 4D trajectories) 

required for the evaluation of almost any ATM concept.  

In addition to the utilizations of parallel processing on computer clusters for global trajectory optimization, this 

study also re-implements the MATLAB M-Stage program in Java programming language with modified numerical 

techniques to reduce the computational time. The development of Java programs for FACET required relatively 

more development effort, but it facilitates integration of the new features, which calculate time-optimal routes 

between worldwide airport pairs in a wind field, for use with existing FACET applications.  
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1. Aircraft Trajectory Simulation 

FACET models four-dimensional (4D) aircraft trajectories in the presence of winds using round-earth kinematic 

equations. Aircraft can be flown along flight plan routes or direct (great circle) routes as they climb, cruise, and 

descend according to their individual aircraft-type performance models. Performance parameters are obtained from 

data table lookups. Heading and airspeed dynamics are also modeled. The airspace model includes geometric 

descriptions of Air Route Traffic Control Centers (ARTCCs or “Centers”), their sectors, Victor Airways and Jet 

Routes, as well as the locations of airports and fixes (navigation aids and airway intersections). For the purpose of 

simulating global aircraft trajectories, the current airspace domain in FACET was modified from US continental 

airspace to global scope. Global Forecast System (GFS) provides wind data over the globe. The worldwide 

commercial air traffic schedules describing aircraft type, departure time, city-pairs are provided by data supplied by 

OAG Worldwide LLC. The integration of GFS and OAG data enables the simulation of global aircraft trajectories.  

 

2. Aircraft Trajectory Optimization 

FACET integrates three distinct components (1) Data computation using the “C” programming language,  (2) 

display of information through a GUI written in Java ; and (3) API using . The FACET API is a set of routines for 

building software applications to support development of future ATM systems. In this study, two versions of the 

optimization algorithms are programed in and implemented with the FACET API. They are called FACET M-Stage 

program and FACET 0-stage program, respectively. The FACET M-Stage program optimizes an aircraft trajectory 

in multiple stages and FACET 0-Stage program optimizes an aircraft trajectory in one step for further reduction of 

computational time. The original MATLB M-Stage program applied interpolation techniques provided by 

MATLAB numerical library for the estimation of optimal aircraft headings and cost-to-go values at various 

locations along the potential optimal routes within the search space. FACET M-Stage program and FACET 0-Stage 

program are implemented using only self-implemented numerical techniques without using build-in third party 

numerical library.  

  

 
Figure 1. The wind-optimal trajectory depicted in blue line and the forward wind extremals depicted in red 

lines for a transatlantic flight from London to New York on August 19, 2014 calculated by FACET API. 

 

The FACET M-Stage program optimizes an aircraft trajectory in multiple stages and based on cost-to-go values 

along wind-optimal extremals. For illustration purpose, figure 1 depicts the horizontal wind-optimal trajectory 

computed by FACET API in the blue line for a transatlantic flight from London to New York on August 19, 2014. 



 

American Institute of Aeronautics and Astronautics 
 

 

5 

The wind vectors at 36,000 feet are plotted in cyan and blue for illustration of wind directions and magnitudes. The 

forward wind-optimal extremals generated by forward integration using a range of different initial heading angles at 

start of each optimization stages are plotted in red. These forward extremals provide the minimum cost-to-go values 

from the starting point to any points along them. Using a range of different final heading angles at the destination, 

another collection of backward wind-optimal extremals is generated by backward integration. These backward 

extremals provide the minimum cost-to-go values to the destination from any points along them.  Interpolation 

techniques are then applied to estimate the total cost-to-go values from any points in the covered airspace region 

using the cost-to-go values provided by the forward extremals and the backward extremals. Based on those, the 

wind-optimal trajectory is determined by minimizing the total cost-to-go values from the origin to the destination. 

The FACET 0-Stage program is a simplified version of FACET M-Stage program that optimizes an aircraft 

trajectory based on backward extremals only. The optimal initial aircraft heading is computed by interpolations 

using the closest available wind-optimal extremals at the origin.   

Table 1 summarizes the initial performance evaluation of the three programs. It lists aircraft travel time of the 

wind-optimal trajectories computed by them for flights operating between five popular city pairs during August 19, 

2014. It also lists the computational times when they are running on a Mac Pro with dual 2.66 GHz 6-core Intel 

Xeon processors and 16 GB memory. Note that the average computational time of the MATLAB M-Stage program 

is about 29.24 seconds in this example. The aircraft travel time of each wind-optimal trajectory computed by Matlab 

M-stage program is almost the shortest for the chosen city pairs except from New York to London. FACET M-Stage 

program provides comparable performance overall and reduces the average computational time of MATLAB M-

Stage program by a factor of 15 to around 1-2 seconds.  The FACET 0-Stage program offers the shortest 

computational times range between 0.5 and 0.9 seconds and provides reasonably close results except for the flight 

from New York to Paris. In this case, the program terminates without satisfying the convergence tolerance due to the 

approximations made for the program. The FACET 0-Stage program can potentially reduce the average 

computational time of MATLAB M-Stage program by a factor of 40.  

A useful application of the wind-optimal trajectories is the assessment of potential aircraft travel time and fuel 

savings due to winds. Hence, the performances of the three programs are evaluated under this potential application 

in Section V based on a group of transatlantic flights during the month of January 2012.  

 

Table 1. Performance evaluations for the FACET M-Stage, FACET 0-Stage and MATLB M-Stage programs. 

Origin-Destination 

Aircraft Travel Time (minutes) Computational Time (seconds) 

FACET 

M-Stage 

FACET 

0-Stage 

MATLAB  

M-stage 

FACET  

M-Stage 

FACET 

0-Stage 

MATLAB 

 M-Stage 

New York-London 350 355 351 2.0 0.91 25.1 

Chicago-London 409 409 409 2.1 0.74 31.7 

New York-Paris 371 Fail 366 1.6 0.61 28.5 

New York-San Francisco 298 298 298 1.0 0.56 18.6 

Dallas-London 488 491 488 2.3 0.76 42.3 

III. Flight and Atmospheric Data 

In this study, global flight schedules are obtained from the OAG. Preliminary records from the OAG data file 

show that there are 96,682 active flights with 203 aircraft types flown for Thursday, June 26, 2014. The top 10 

airports worldwide that have the most number of departures and arrivals are listed in Table 2. The ten most 

frequently flown aircraft types are shown in table 3. The global flight schedules and aircraft data acquired from 

OAG are applied for the preparation of simulating global trajectory optimization scenarios on different computing 

platforms.  

The computation of aircraft trajectories uses atmospheric data such as wind and temperature provided by the 

Global Forecast System (GFS). GFS is a global numerical weather prediction computer model run by the National 

Oceanic & Atmospheric Administration four times a day. It produces forecasts up to 16 days, and produces a 

forecast for every 3rd hour for the first 180 hours, and after that, every 12 hours. The horizontal resolution is roughly 

equivalent to 0.5×0.5 degree latitude/longitude. GFS data has 64 unequally spaced vertical isobaric pressure levels 

ranging between 0.25-1000 mb, with enhanced resolution at low and high altitude. 

For the purpose of trajectory optimization with respect to wind conditions for flights during cruise, the horizontal 

wind vectors are obtained by interpolations for 21 altitude layers between flight levels 240 through 440.  The wind 

shear is pre-computed for every grid points and altitude layers in MATLAB and saved as a binary file. 
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 Table 2. Ten busiest airports during June 26, 2014. 

Rank Airports Total Departure 

and Arrivals 

Rank Airports Total Departure 

and Arrivals 

1 Chicago (KORD) 2,608 6 Beijing (ZBAA) 1,488 

2 Atlanta (KATL) 2,387 7 Charlotte (KCLT) 1,436 

3 Dallas (KDFW) 1,936 8 Frankfurt (EDDF) 1,371 

4 Los Angeles (KLAX) 1,646 9 Houston (KIAH) 1,370 

5 Denver (KDEN) 1,565 10 London (EGLL) 1,338 

 

Table 3. Ten most common aircraft types during June 26, 2014. 

Rank Aircraft Types Total Rank Aircraft Types Total 

1 Airbus A320 14,036 6 Airbus A321 3,764 

2 Boeing 737-800 12,252 7 Embraer E-190 2,285 

3 Boeing 737-700 6,861 8 Bombardier DH8D 2,222 

4 Airbus A319 6,279 9 ATR 72 2,199 

5 Bombardier CRJ-900 4,633 10 Embraer ERJ 140 1,974 

IV. Efficiency of the Computing Platforms 

 This section presents the wind-optimal trajectories computed by the three computational platforms. It compares 

the computational efficiency for generation of global aircraft trajectories in wind fields using a Mac Pro, NAS 

supercomputer, and ACES computer cluster, respectively. The results are based on applying the optimal trajectory 

algorithm to calculate an aircraft trajectory in the presence of winds that minimizes the aircraft travel time. Typical 

cruise speed and altitudes are chosen based on Eurocontrol’s Base of Aircraft Data Revision 3.6 (BADA)11 given the 

aircraft type.  

Wind-optimal aircraft trajectories are computed using global air traffic schedules from OAG for June 26, 2014. 

Although the flights were taken from the schedule for June 26, 2014, they were used in conjunction with the wind 
data for June 26, 2010.  The wind data were chosen out of the set of available data but do not affect the results for 

examining run-time performance of the current study. The flight operations involving unknown airports are 

neglected. The optimal trajectories for flights that have expected travel time less than one hour are approximated by 

the great-circle route to reduce the total number of required computations. Only one optimal trajectory is calculated 

for the flights with the same origin and destination airports and departing within the same 6-hour weather data 

window because they have the same optimal trajectory, to eliminate the redundancy in the optimization process.  

This leaves a total of 34,123 flights for which optimized routes are calculated. Figure 2 plots the wind-optimal 

trajectories worldwide based on flight schedules for June 26, 2014 and wind data for June 26, 2010.  

    

 
Figure 2. Wind-optimal trajectories worldwide for June 26, 2010.  
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 Figure 3 presents the run time in (a) and wait time in (b) on Pleiades for computation of 34,123 optimal 

trajectories when running Python M-Stage program using various numbers of CPUs ranging from 80 to 10,240 

CPUs. The values for run time and wait time are listed in Table 4. They are obtained based on a total of 33 jobs 

submitted between August 2014 and September 2014 with at least four jobs submitted for same number of CPUs. In 

this example, results show that the average run time on Pleiades for 34,123 optimal trajectories is about 22 minutes 

or i.e. 0.039 sec/trajectory when 10,240 CPUs are used. In this case, the average wait time in the queue after the job 

submission is about 4,027 minutes i.e. 2.8 days.  The run times for using 2,560+ CPUs are similar and less than 30 

minutes, but the wait times jump to above 20 hours. When 640 CPUs are used, the computations take about 57 

minutes i.e. 0.1 sec/trajectory with the average wait time of 266 minutes. It is observed that the average turnaround 

time that includes run time and wait time is the shortest for the case when 640 CPUs are used due to a long wait 

period for requesting large number of CPUs. 

  

       
(a)                 (b) 

Figure 3. Run time and wait time on Pleiades with different number of CPUs employed for generation of the 

wind-optimal trajectories worldwide on June 26, 2010; Run time is Fig. 3a and wait time is Fig. 3b.    

  

 When the computations for 34,123 optimal trajectories are performed by running MATLAB M-Stage program 

on the ACES cluster computer using 100 MATLAB workers, the computational time is about 453 minutes i.e. 0.8 

sec/trajectory. This is a significant improvement over the previous desktop method, which would take around 12 

days to complete. There is no wait time for this particular case since there is no other MATLAB job submitted to the 

computer cluster at the time. In this example, the computations done in NAS using 160 CPUs to 1280 CPUs provide 

the shorter turnaround times than the ACES Cluster.   

 Neglecting the wait time, the shortest estimated computational time for generation of wind-optimized global 

aircraft trajectories for one day is about 22 minutes when 10,240 CPUs on Pleiades are used.  Including the wait 

time the shortest estimated turnaround time for the same computation is about 5.4 hours when 640 CPUs on Pleiades 

are used. 

Table 4. Computational performance on 3 platforms for different number of threads. 

Algorithm Platform Threads 
Run time/trajectory 

(seconds) 

Total run time 

(hours) 

Wait time 

(hours) 

MATLAB M-Stage Mac Pro 1 30 285.30 0 

MATLAB M-Stage ACES Cluster 100 0.80 7.55 0 

Python M-Stage NAS Pleiades 80 0.74 7.03 5.9 

Python M-Stage NAS Pleiades 160 0.38 3.57 2.3 

Python M-Stage NAS Pleiades 320 0.19 1.78 4.7 

Python M-Stage NAS Pleiades 640 0.10 0.95 4.4 

Python M-Stage NAS Pleiades 1,280 0.07 0.65 5.6 

Python M-Stage NAS Pleiades 2,560 0.05 0.45 21.0 

Python M-Stage NAS Pleiades 5,120 0.04 0.40 34.1 

Python M-Stage NAS Pleiades 10,240 0.04 0.37 67.1 
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The computational time can be further reduced by the application of FACET M-Stage program and FACET 0-

Stage program that were written in Java with modified numerical techniques. As shown in Section IIC, the FACET 

M-Stage program reduces the average computational time of MATLAB M-Stage program by a factor of 15 on the 

Mac Pro; and FACET 0-Stage program can potentially reduces the average computational time of MATLAB M-

Stage program by a factor of 40. In the future, Python M-Stage program running on NAS can be replaced by the 

FACET M-Stage program and FACET 0-Stage program. When considering only computational time, the 

computation of daily wind-optimized aircraft trajectories worldwide can take potentially 1.5 minutes for running 

FACET M-Stage program on Pleiades using 10,240 CPUs; and it will take about 33 seconds when running FACET 

0-Stage program. The wait time for requesting a large number of CPUs on NAS could be reduced by negotiating a 

higher priority for the submitted jobs to be able to compute multiple air traffic scenarios for long periods of time. 

V. Accuracy of MATLAB and FACET Algorithms 

Due to the potential computational enhancement gained from the FACET programs, this section compares the 

accuracy and the performance of the aircraft trajectories optimized by FACET M-Stage, FACET 0-Stage, and 

MATLAB M-Stage programs. It is assumed that the MATLAB M-Stage algorithm provides the highest accuracy 

with the most computational time. An important application for the wind-optimal aircraft trajectories is the 

assessment of potential impact of winds to flight path planning for air traffic worldwide. The impact of winds is 

greater for long-haul flights. The wind-optimal trajectories are generated for transatlantic air traffic for the entire 

month of January 2012. The flight schedules and aircraft data are provided by FAA’s Traffic Flow Management 

System (TFMS).  A total of 10,682 eastbound transatlantic flights and 11,023 westbound transatlantic flights are 

selected for the evaluation based on all the information needed to make the wind-optimal computations. The results 

are used to evaluate the performance of the three optimization programs by assessing the travel time of each wind-

optimal trajectory for various airport pairs and aircraft types over this period.  

The FACET 0-Stage program successfully calculates a total of 16,441 wind-optimal aircraft trajectories for the 

9,541 eastbound flights and 6,900 westbound flights. These flights are selected for comparison with the wind-

optimal trajectories calculated by MATLAB M-Stage program and FACET M-Stage program. Note that the 
convergence rate can be improved by increasing the backward wind extremals.    

 

 
Figure 4. Percent travel time difference between the aircraft trajectories computed by different approaches 

for transatlantic flights during January 2012. 

 

The blue bars in figure 4 plot the travel time differences of the wind-optimal trajectories computed by the 

FACET M-Stage program and the MATLAB M-Stage program and the evaluation of the two FACET 

implementations. About 84% of the wind-optimal trajectories computed by the two programs have the same travel 

time. Approximately 10% of the wind-optimal trajectories calculated by the FACET M-Stage program have 1%-2% 

travel time greater than those computed by MATLAB M-Stage program.  The differences are due to the 

approximation of interpolations made for FACET M-Stage program and can be reduced by increasing the number of 

forward wind extremals. The FACET M-Stage program provides aircraft trajectories that have overall similar 

performance to those computed by MATLAB M-Stage program with computational speed approximately 15 times 
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faster.  

The green bars and magenta bars present the results for the FACET 0-stage program compared with the 

MATLAB M-Stage and FACET M-Stage algorithms, respectively.  About 43% of the wind-optimal trajectories 

computed by the FACET 0-Stage program and the MATLAB M-Stage program have the same travel time. 

Approximately 44% of the wind-optimal trajectories calculated by FACET 0-Stage program have travel time longer 

than those computed by MATLAB M-Stage by 1%-2%; and almost 14% have travel time greater than 3%.  The 0-

Stage algorithm has a bigger performance difference due to the simplification made using only backward wind 

extremals in addition to approximation of interpolation technique but with computation efficiency about 40 times 

faster than MATLAB M-Stage program. In this example, there is clearly a tradeoff that exists between computation 

speed and optimization results.    

VI. Conclusion 

 This paper provides three approaches for computing global air traffic simulation of wind-optimal routes. They 

are: (a) using the resources of a supercomputer, (b) running the computations on multiple machines and (c) using 

FACET. Wind-optimal aircraft trajectories are computed using global air traffic schedules for June 26, 2014. 

Neglecting the wait time, the shortest estimated computational time for the generation of wind-optimized global 

aircraft trajectories for one day is about 22 minutes when 10,240 CPUs on Pleiades are used.  Including the wait 

time the shortest estimated turnaround time for the same computation is about 5 hours 24 minutes when 640 CPUs 

on Pleiades are used; the computation takes about 57 minutes i.e. 0.1 sec/trajectory with the average wait time of 

267 minutes. When the same computation is performed on ACES computer cluster using 100 MATLAB workers, 

the turnaround time is about 7 hours 33 minutes i.e. 0.8 sec/trajectory with no other MATLAB job submitted to the 

computer cluster at the time. The computations done in NAS using 160 CPUs to 1280 CPUs provide the shorter 

turnaround time than the ACES cluster computer. 

 In the future, the computational time can be further reduced by the application of FACET M-Stage program and 

FACET 0-Stage program that were written in Java with modified numerical techniques. When considering only 

computational time, the computation of daily wind-optimized aircraft trajectories worldwide is estimated to take 1.5 
minutes when running FACET M-Stage program on Pleiades using 10,240 CPUs; and the estimated computational 

time is about 33 seconds for running FACET 0-Stage program. FACET M-Stage program seems to provide the best 

balance between performance and run time for wind-optimal trajectory application. Thus, in the absence of special 

privileges on the supercomputer, a cluster of computers provides a good option for computing wind-optimal 

trajectories for national and global air traffic system trade-off studies. 
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